Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

An efficient aldol-based approach for the synthesis of dihydrokawain-5-ol

Ahmed Kamal*, Papagari Venkat Reddy, S. Prabhakar

Chemical Biology Laboratory, Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 607, India

ARTICLE INFO

Article history: Received 26 June 2009 Accepted 6 August 2009 Available online 31 August 2009

ABSTRACT

An efficient and simple aldol-based convergent approach toward the total synthesis of (+)- and (-)dihydrokawain-5-ol is described. The key features of this synthetic strategy include Evans' aldol reaction and an ethyl acetate addition reaction for the formation of the six-membered ring.

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedron

1. Introduction

The δ -lactone ring system is found in a number of natural products and is also featured in many intermediates that are required for the synthesis of biologically important compounds.¹ These δ lactones have been shown to exhibit a wide range of biological activities such as antibiotic, anticancer, anti-inflammatory, antimicrobial and insecticidal.² The δ -lactone, (+)-dihydrokawain-5-ol **1b** (6-alkyl-5-hydroxy-5,6-dihydropyran-2-one) has been isolated from the methanol extracts of the kava plant (*Piper mythisticum*), a Polynesian shrub of the pepper family, which is mostly found in the South Pacific islands including Fiji and Hawaii.³ Traditionally, the roots and rhizomes of this plant are ground and made into a liquid beverage for consumption during formal, social, or religious engagements.⁴

The extracts of this plant contain at least six pharmacologically active compounds referred to as kavapyrones,⁵ which mediate the local anesthetic, sedating, anticonvulsive, muscle relaxant, and sleep stimulating effects.⁶ The potential use of this kava extracts is being considered in the treatment of fear and anxiety-related disorders.⁷ Kava has been found to be superior to placebos and effectively relieves anxiety as well as tension.⁸ However, the FDA and CDC have issued warnings about the severe cases of liver injury probably associated with the use of kava-containing dietary supplements. This has prompted the investigation of all the major compounds in a systematic manner that are present in kava. Therefore, the synthesis of various kava-based compounds particularly in their enantiopure form is of importance (Fig. 1).

The absolute (5*R*,6*S*)-configuration in (+)-dihydrokawain-5-ol **1b** has been assigned by its synthesis through SeO₂ allylic oxidation of (+)-dihydrokawain **1e**, derived from kawain **1f**.⁹ Some approaches have been developed in the literature for the synthesis of (+)-dihydrokawain-5-ol **1b** by employing different protocols. Friesen et al.^{10a} synthesized dihydrokawain-5-ol **1b** in a racemic form while

later the synthesis of (+)-dihydrokawain-5-ol was accomplished by Arai et al.^{10b} utilizing chiral sulfoxides, whereas Singh et al.^{10c} have obtained its (+)-form and the other stereoisomers from α -D-glucose. Recently, we have reported the synthesis of both the (+)- and (-)-dihydrokawain-5-ol from dihydrocinnamaldehyde utilizing Sharpless asymmetric dihydroxylation process.^{10d}

Figure 1. Kavalactones.

2. Results and discussion

As part of our continuing studies directed toward the synthesis of lactones and other biologically active molecules,¹¹ we herein report a new synthetic route to (+)- and (-)-dihydrokawain-5-ol employing the well-known and widely used Evans' asymmetric aldol

^{*} Corresponding author. Tel.: +91 40 27193157; fax: +91 40 27193189. *E-mail address:* ahmedkamal@iict.res.in (A. Kamal).

^{0957-4166/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2009.08.006

reaction¹² as the key step in their preparation. By using this methodology, two *syn*-hydroxyl groups are introduced at the C₅ and C₆ positions in their skeleton. Our initial retrosynthetic plan is outlined in Scheme 1. Retrosynthetically, (–)-dihydrokawain-5-ol can be obtained from intermediate **9a**, which can be formed by the condensation of the aldehyde of Weinreb amide **7a** with ethyl acetate. Moreover, this Weinreb amide can be produced by the transamidation of aldol product **5a**. This aldol product can be prepared from the commercially available dihydrocinnamaldehyde.

The synthesis of **1a** starts by the coupling of the 2-(benzyloxy)acetic acid derivative with oxazolidinone **3a** by employing Ho's protocol¹³ to afford (4*S*)-4-benzyl-3-[2-(benzyloxy)acetyl]-1,3-oxazolan-2-one **4a** in 90% yield. Aldol reaction of hydrocinnamaldehyde with **4a** using dibutylboron triflate and triethylamine in CH₂Cl₂ at -78 °C for 4 h gives the *syn*-aldol product¹⁴ **5a** in good yield (81%) as a single diastereomer. The chiral auxiliary in **5a** is removed by transamidation to afford Weinreb amide **6a** in 84% yield. The hydroxyl group of **6a** is protected as the TBDMS ether using TBDMS triflate and triethylamine at -78 °C for 4 h to provide **7a** in 83% yield. At this stage the condensation of **7a** with ethyl acetate using different bases in a variety of solvents was attempted, however, the desired product **9a** was not obtained. Therefore the Weinreb amide was initially treated with DIBAL-H to afford the aldehyde, which without further purification underwent EtOAc addition at $-78 \,^{\circ}\text{C}$ (EtOAc/LiHMDS/THF/ $-78 \,^{\circ}\text{C}$) to give the diastereomeric alcohol **8a** in 68% yield. Compound **8a** upon oxidation with Dess-Martin periodinate in CH₂Cl₂ forms the β -keto ester **9a** in good yield.

Treatment of compound **9a** with PTSA in methanol¹⁵ resulted in the deprotection of the TBDMS ether as well as the formation of a cyclized lactone **10a**, which was not isolated. Upon treatment with Me₂SO₄ and K₂CO₃ in acetone the desired precursor **11a** was obtained in good yield. After the lactone formation benzyl-protected alcohol was then deprotected. Compound **11a** was then treated with TiCl₄ in CH₂Cl₂^{16,10d} at 0 °C to afford the required target compound (–)-dihydrokawain-5-ol **1a**. The spectroscopic and analytical data were comparable to the previously reported data in the literature.^{10c,d}

Similarly the synthesis of (+)-dihydrokawain-5-ol **1b**, was carried out by employing (4R)-4-benzyl-3-[2-(benzyloxy)acetyl]-1,3-oxazolan-2-one as the starting material, followed by the same set of reactions as in Scheme 2, as depicted in Scheme 3. The spectro-

Scheme 1. Retrosynthetic analysis of 1a and 1b.

Scheme 2. Reagents and conditions: (a) pivolyl chloride, Et₃N, THF, **3a**, LiCl, Et₃N, 90%; (b) Bu₂BOTf, Et₃N, CH₂Cl₂, -78 °C, 4 h, 81%; (c) *N*-methoxy-*N*-methylamine hydrochloride, Me₃Al, THF, 0 °C to rt, 1 h, 84%; (d) TBDMS triflate, Et₃N, -78 °C-rt, 4 h, 83%; (e) (i) DIBAL-H, CH₂Cl₂, -78 °C, 2 h; (ii) EtOAc, LiHMDS, THF, -78 °C, 1 h, 68%; (f) Dess-Martin periodinate, CH₂Cl₂, 0 °C to rt, 1 h; (g) PTSA, methanol, 8 h, 0 °C to rt, (h) Me₂SO₄, K₂CO₃, acetone, 10 h; (i) TiCl₄, CH₂Cl₂, 0 °C-rt, 15 min, 89%.

Scheme 3. Reagents and conditions: (a) pivolyl chloride, Et₃N, THF, 3b, LiCl, Et₃N.

scopic and analytical data were comparable to the previously reported data in the literature.^{10b-d}

3. Conclusion

In conclusion, we have developed an efficient and convenient approach for the synthesis of (+)- and (-)-dihydrokawain-5-ol. In this protocol, stereocenters are established by an Evans' asymmetric aldol reaction that has been chosen as the key step for the synthesis of these molecules by using simple commercially available starting materials. The syntheses of related compounds of this family are currently underway in this laboratory.

4. Experimental

4.1. General experimental

Reagents and chemicals were purchased from Aldrich. All solvents and reagents were purified by standard techniques. THF was freshly distilled from LiAlH₄. Crude products were purified by column chromatography on 60–120 silica gel. IR spectra were recorded on Perkin–Elmer 683 spectrometer. Optical rotations were obtained on a Horiba 360 digital polarimeter. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution on a Varian Gemini 200, Brucker Avance 300. Chemical shifts are reported in ppm with respect to the internal TMS. Mass spectra were recorded on VG micromass-7070H (70 Ev).

4.2. (4*S*)-4-Benzyl-3-[(2*S*,3*R*)-2-(benzyloxy)-3-hydroxy-5-phenylpentanoyl]-1,3-oxazolan-2-one 5a

To a stirred solution of chiral auxiliary 4a (5 g, 15.38 mmol) in dry CH₂Cl₂ (50 mL) at -78 °C was added triethylamine (2.56 mL, 18.46 mmol) followed by the dropwise addition of dibutylboron triflate (16.92 mL, 16.92 mmol, 1 M solution in CH₂Cl₂) and stirred for 1 h at the same temperature. The solution was warmed to 0 °C for 45 min and recooled to -78 °C. Dihydrocinnamaldehyde (2.22 mL, 16.92 mmol) solution in CH₂Cl₂ (5 mL) was added dropwise via a cannula. The reaction mixture was allowed to stir at -78 °C for 2 h. The reaction was quenched with MeOH (25 mL) followed by pH 7 buffer (12 mL). After 1 h, 30% aqueous H₂O₂ (5 mL) was added dropwise and stirred at 0 °C for 1 h. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ $(2 \times 100 \text{ mL})$. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuo. The residue was purified by column chromatography (silica gel, 60-120 mesh, EtOAchexane 30:70) to afford the compound 5a (5.71 g, 81%) as a solid. Mp: 97–99 °C. $[\alpha]_D^{25} = +70.5$ (*c* 1.5, CHCl₃); IR (neat): γ_{max} : 3507, 2928, 1788, 1685, 1453, 1211, 757, 701 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ = 7.35–7.11 (m, 15H), 5.1 (d, J = 2.9 Hz, 1H), 4.64–4.57 (m, 1H), 4.54 (q, J = 11.7 Hz, 2H), 4.27-4.09 (m, 2H), 3.85 (br s, 1H), 3.27 (dd, J = 2.9, 13.2 Hz, 1H), 2.87–2.49 (m, 3H), 2.23 (br s, 1H), 1.93 (q, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 170.5, 153.3, 141.6, 136.9, 134.9, 129.2, 128.8, 128.4, 128.3, 128.2, 128.1, 127.3, 125.68, 79.2, 72.8, 72.1, 66.9, 55.4, 37.5, 35.6, 31.74; ESI-MS: $m/z = 460.6 (M+H)^+$.

4.3. (2S,3R)-2-(Benzyloxy)-3-hydroxy-*N*-methoxy-*N*-methyl-5-phenylpentanamide 6a

To a stirred solution of N,O-dimethylhydroxylamine hydrochloride (4.6 g, 47.93 mmol) in dry THF (100 mL) at 0 °C was added trimethylaluminum (17.97 mL, 35.94 mmol, 2 M in toluene) dropwise. Then the mixture was allowed to stir at room temperature for 30 min and recooled to 0 °C. Compound 5a (5.5 g, 11.98 mmol) in dry THF (10 mL) was added dropwise and then stirred at room temperature for 2 h. After completion of the reaction, the reaction was slowly quenched with dil HCl. Next, THF was evaporated and extracted with EtOAc (2×100 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuo. The residue was purified by column chromatography (silica gel, 60–120 mesh, EtOAc–hexane 40: 60) to afford the compound **6a** (3.45 g, 84%) as a colorless liquid. $[\alpha]_D^{25} = -13.5$ (*c* 1.1, CHCl₃); IR (neat): γ_{max} : 3430, 2931, 1660, 1454, 750, 700 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ = 7.36–7.08 (m, 10H), 4.53 (dd, *J* = 11.7 Hz, 2H), 4.17 (d, J = 4.4 Hz, 1H), 3.81 (m, 1H), 3.46, (s, 3H), 3.17 (s, 3H), 2.85-2.52 (m, 2H), 2.01-1.6 (m, 2H); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 171.1, 141.6, 137.1, 128.3, 128.2, 128.1, 127.96, 125.7, 128.1, 127.96, 125.7, 128.1, 127.96, 125.7, 128.1, 128.2, 128.1, 128.2, 128.1, 128.2, 128.1, 128.2, 128.1, 128.2, 128.1, 128.2, 128.1, 128.2, 128.1, 128.2, 128.2, 128.1, 128.2, 128$ 77.4, 71.9, 71.3, 61.1, 34.7, 32.3, 31.7; ESI-MS: $m/z = 344.6 (M+H)^+$.

4.4. (2S,3R)-2-(Benzyloxy)-3-(*tert*-butyldimethylsilyloxy)-*N*-methoxy-*N*-methyl-5-phenylpentanamide 7a

To a stirred solution of Weinreb amide 6a (3.2 g, 9.32 mmol) in dry CH₂Cl₂ (40 mL) at -78 °C were added TBSOTf (2.35 mL, 10.26 mmol) and triethylamine (1.55 mL, 11.19 mmol) and allowed to stir at room temperature for 4 h. After completion of the reaction, the reaction was quenched by satd NH₄Cl solution (20 mL) and the reaction mixture was extracted with CHCl₃ (2 \times 75 mL), dried over an hydrous Na $_2\text{SO}_4$, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 60-120 mesh, EtOAc-hexane 5:95) to afford 7a (3.53 g, 83%) as a colorless liquid. $\left[\alpha\right]_D^{25}=-4.4$ (c 1.4, CHCl_3); IR (neat): γ_{max} : 2930, 1670, 1458, 1113, 835, 777 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 7.35 - 7.06 \text{ (m, 10H)}, 4.55 \text{ (dd, } I = 11.9 \text{ Hz},$ 2H), 4.24 (d, J = 6.4 Hz, 1H), 4.1-4.03 (m, 1H), 3.5 (s, 3H), 3.15 (s, 3H), 2.71-2.49 (m, 2H), 1.85-1.74 (m, 1H), 1.7-1.58 (m, 1H), 0.908 (s, 9H), 0.06 (s, 3H), 0.02 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 171.5, 142.4, 137.6, 128.2, 128.06, 127.64, 127.61, 125.6, 79.3,$ 72.9, 72.9, 60.9, 35.3, 32.2, 31.5, 25.5, 18.1, -4.1, -4.7; ESI-MS: $m/z = 458.6 (M+H)^+$.

4.5. Ethyl(4R,5R)-4-(benzyloxy)-5-[1-(*tert*-butyl)-1,1-dimethyl silyl]oxy-3-hydroxy-7-phenylheptanoate 8a

To a stirred solution of compound **7a** (3.3 g, 7.22 mmol) in dry CH₂Cl₂ (50 mL) at -78 °C was added DIBAl-H (3.97 mL, 7.94 mmol, 2 M in toluene) and stirred for 1 h at the same temperature. After completion of the reaction, the reaction was quenched with sodium potassium tartarate solution, and the reaction mixture was stirred for 30 min at room temperature and extracted with CH₂Cl₂ $(2 \times 50 \text{ mL})$. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuo to afford the crude aldehyde, which was used for the next step without purification. To a stirred solution of ethyl acetate (2.13 mL, 21.85 mmol) in THF at -78 °C was added LiHMDS (18.21 mL, 18.21 mmol, 1 M in THF) dropwise and stirred for 45 min. To this reaction mixture the aldehyde (2.9 g, 7.28 mmol) obtained above was taken in THF (8 mL) and added slowly with stirring for 2 h at -78 °C. After completion of the reaction, the reaction was guenched with aqueous ammonium chloride solution. Next THF was evaporated and extracted with $CHCl_3$ (2 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 60–120 mesh, EtOAc–hexane 10:90) to afford compound **8a** (2.38 g, 68%) as a colorless liquid. $[\alpha]_D^{25} = +33.4$ (*c* 1.1, CHCl₃); IR (neat): γ_{max} : 3507, 2931, 1733, 1095, 837, 775 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.35-7.18$ (m, 10H), 4.72–4.57 (m, 2H), 4.11 (q, *J* = 7.5, 14.3 Hz, 2H), 4.28–4.2 (m, 1H), 3.89 (m, 1H), 3.31 (t, 1H), 2.78–2.43 (m, 5H), 2.08–1.97 (m, 1H), 1.88–1.75 (m, 1H), 1.24 (t, *J* = 7.5, 14.3 Hz, 3H), 0.91 (s, 9H), 0.05 (s, 3H), 0.01 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 171.7$, 142.1, 137.9, 128.42, 128.35, 128.32, 127.93, 125.7, 82.5, 73.8, 71.6, 67.3, 60.5, 39.7, 34.2, 32.1, 25.8, 18.1, 14.1, -4.1, -4.6; ESI–MS: *m/z* = 487 (M+H)^{*}.

4.6. Ethyl (45,5R)-4-(benzyloxy)-5-[1-(*tert*-butyl)-1,1dimethylsilyl]oxy-3-oxo-7-phenylheptanoate 9a

To a stirred solution of compound 8a (2.1 g, 4.33 mmol) in CH₂Cl₂ (40 mL), Dess-Martin periodinate (2.02 g, 4.77 mmol) was added at 0 °C and stirred for 1 h. After completion of the reaction, the reaction was guenched with aqueous sodium thiosulfate solution (20 mL) and saturated aqueous sodium bicarbonate solution (10 mL). The reaction mixture was extracted with CH₂Cl₂ $(2 \times 50 \text{ mL})$, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 60-120 mesh, EtOAc-hexane 7: 93) to afford 9a (1.92 g, 92%) as a yellow liquid. $[\alpha]_D^{25} = +6.8$ (c 1.1, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ = 7.39–7.11 (m, 10H), 4.76 (d, J = 11.6 Hz, 1H), 4.46 (d, J = 11.6 Hz, 1H), 4.36–4.25 (m, 1H), 4.17 (q, J = 7.2, 13.8 Hz, 2H), 4.04-3.82 (m, 1H), 3.72-3.51 (m, 2H), 2.58 (m, 2H), 2.13-1.94 (m, 1H), 1.81–1.56 (m, 1H), 1.3 (t, J = 7.2, 13.8 Hz, 3H), 0.94 (s, 9H), 0.08 (s, 3H), 0.01 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ = 204.6, 167.3, 141.5, 137.1, 128.4, 128.3, 128.2, 128.1, 128.05, 125.85, 86.2, 73.3, 73.0, 61.2, 47.2, 35.1, 31.6, 25.8, 18.0, 14.0, -4.6, -4.7; IR (neat): γ_{max}: 2931, 2858, 1746, 1722, 1254, 837, 776, 699 cm⁻¹. ESI-MS: $m/z = 485.6 (M+H)^+$.

4.7. (5S,6R)-5-(Benzyloxy)-4-methoxy-6-phenethyl-5,6-dihydro-2H-2-pyranone 11a

To a stirred solution of 9a (1.7 g, 3.51 mmol) in dry MeOH (20 mL) at 0 °C was added PTSA (0.06 g, 0.35 mmol) and stirred at room temperature for 8 h. After completion of the starting material, methanol was evaporated. To the above crude compound in acetone at 0 °C was added Me₂SO₄ (0.665 mL, 7.02 mmol) followed by K₂CO₃ (0.96 g, 7.02 mmol). The reaction mixture was stirred for 10 h. After completion of the reaction, solid K₂CO₃ was filtered, and acetone was evaporated and extracted with EtOAc (2×40 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuo. The residue was purified by column chromatography (silica gel, 60-120 mesh, EtOAc-hexane 40:60) to afford the compound 11a (0.89 g, 75%) as a solid. Mp 85-88 °C. $[\alpha]_D^{25} = -118.9$ (c 1.5, CHCl₃); IR (neat): γ_{max} : 1711, 1633, 1221, 1059, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 7.33–7.1 (m, 10H), 5.14 (s, 1H), 4.61 (dd, J = 12.1 Hz, 2H), 4.16-4.08 (m, 1H), 3.71 (s, 3H), 3.66-3.65 (m, 1H), 2.84-2.64 (m, 2H), 2.41-2.29 (m, 1H), 1.92-1.8 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 171.7, 165.9, 140.7, 137.1, 128.41, 128.4, 128.3, 127.7, 126.0, 92.2, 77.8, 72.3, 71.2, 55.9, 31.2, 30.8; ESI-MS: *m*/*z* = 339 (M+H)⁺.

4.8. (55,6R)-5-Hydroxy-4-methoxy-6-phenethyl-5,6-dihydro-2H-2-pyranone 1a

To a stirred solution of **10a** (0.4 g, 1.18 mmol) in dry CH_2Cl_2 (15 mL) at 0 °C was added TiCl₄ (0.258 mL, 2.36 mmol) and stirred

for 15 min. After completion of the reaction, the reaction was quenched with aqueous sodium bicarbonate solution, and the reaction mixture was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuo. The residue was purified by column chromatography (silica gel, 60–120 mesh, EtOAc–hexane 60:40) to afford compound **1a** (0.26 g, 89%) as a colorless liquid. [α]_D²⁵ = -63.2 (*c* 1.1, CHCl₃); IR (neat): γ_{max} : 3381, 1685, 1630, 1225, 1051, 749, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 7.31–7.07 (m, 5H), 5.1 (s, 1H), 4.21–4.04 (m, 1H), 3.85 (br s, 1H), 3.75 (s, 3H), 2.89–2.71 (m, 2H), 2.36–2.23 (m, 1H), 2.06–1.95 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 172.7, 166.78, 140.69, 128.43, 128.4, 126.06, 91.19, 78.32, 65.90, 56.27, 30.93, 30.78; ESI–MS: *m/z* = 249 (M+H)⁺.

Acknowledgments

The authors P.V.R. and S.P.R. wish to thank UGC and CSIR, New Delhi for the award of research fellowships.

References

- (a) Argoudelis, A. D.; Zieserl, J. F. Tetrahedron Lett. **1966**, *18*, 1969–1973; (b) Cavil, G. W. K.; Clark, D. V.; Whitefield, F. B. Aust. J. Chem. **1968**, *21*, 2819; (c) Laurence, B. R. J. Chem. Soc., Chem. Commun. **1982**, 59; (d) Honda, T. J. Chem. Soc., Perkin Trans. *1* **1990**, 1733; (e) Wilkinson, A. L.; Hanefeld, U.; Wilkinson, B.; Leadlay, P. F.; Staunton, J. Tetrahedron Lett. **1998**, 39, 9827–9830; (f) Sato, M.; Nakashima, H.; Keisuke, H.; Hayashi, M.; Honzumi, M.; Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. **2001**, *42*, 2833–2837; (g) Hinterding, K.; Singhanat, S.; Oberer, L. Tetrahedron Lett. **2001**, *42*, 8463–8465; (h) Wu, Y.; Shen, X.; Tang, C.-J.; Chen, Z. L.; Hu, Q.; Shi, W. J. Org. Chem. **2002**, *11*, 3802– 3810; (i) Yadav, J. S.; Reddy, P. M. K.; Reddy, P. V. Tetrahedron Lett. **2007**, *48*, 1037–1039; (j) Chakraborty, T. K.; Tapadar, S. Tetrahedron Lett. **2003**, *44*, 2541– 2543; (k) Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. J. Am. Chem. Soc. **2003**, *125*, 3793–3798; (l) Kobayashi, S.; Tsuchiya, K.; Harada, T.; Nishide, M.; Kurokawa, T.; Nakagawa, T.; Shimada, N.; Kobayashi, K. J. Antibiot. **1994**, *47*, 697.
- (a) Stierle, D. B.; Stierle, A. A.; Ganser, B. J. Nat. Prod. **1997**, 60, 1207–1209; (b) Ali, A.; Mackeen, M. M.; Hamid, M.; Aun, Q. B.; Zauyah, Y.; Azimahtol, H. L. P.; Kawazu, K. Planta Med. **1997**, 63, 81–83; (c) Falomir, E.; Murga, J.; Cardaa, M.; Marcob, J. A. Tetrahedron Lett. **2003**, 44, 539–541; (d) Chenevert, R.; Courchesne, G.; Caron, D. Tetrahedron: Asymmetry **2003**, 14, 2567–2571.
- 3. Achenbach, H.; Wittman, G. Tetrahedron Lett. 1970, 37, 3259–3262.
- 4. Pepping, J. J. Health Syst. Pharmacol. 1999, 56, 957-958.
- Dharmaratne, H. R.; Nanayakkara, N. P.; Khan, A. Phytochemistry 2002, 59, 429– 433.
- 6. Bilia, A. R.; Gallon, S.; Vincieri, F. F. Life Sci. 2002, 70, 2581-2597.
- 7. Singh, Y. N.; Singh, N. N. CNS Drugs 2002, 16, 731-743.
- 8. Pittler, M. H.; Ernst, E. J. Clin. Psychopharmacol. 2000, 20, 84-89.
- 9. Achenbach, H.; Huth, H. Tetrahedron Lett. 1974, 15, 119–120.
- For a racemic synthesis see: (a) Friesen, R. W.; Vanderwal, C. J. Org. Chem. **1996**, 61, 9103–9110; For asymmetric synthesis of (+)-dihydrokawain-5-ol see: (b) Arai, Y.; Masuda, T.; Yoneda, S.; Masaki, Y.; Shiro, M. J. Org. Chem. **2000**, 65, 258–262; (c) Singh, R. P.; Singh, V. K. J. Org. Chem. **2004**, 69, 3425–3430; (d) Kamal, A.; Krishnaji, T.; Reddy, P. V. Tetrahedron: Asymmetry **2007**, 18, 1775– 1779.
- (a) Kamal, A.; Reddy, P. V.; Prabhakar, S. Tetrahedron: Asymmetry 2009, 20, 1120–1124; (b) Kamal, A.; Krishnaji, T.; Reddy, P. V. Tetrahedron: Asymmetry 2007, 18, 1775–1779; (c) Kamal, A.; Krishnaji, T.; Reddy, P. V. Tetrahedron Lett. 2007, 48, 7232–7235; (d) Kamal, A.; Krishnaji, T.; Khanna, G. B. R. Tetrahedron Lett. 2006, 47, 8657–8660.
- (a) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. **1981**, *125*, 13531–13540; (b) Evans, D. A.; Dow, R. L. Tetrahedron Lett. **1986**, *27*, 1007–1010; (c) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett. **1986**, *27*, 3119–3122; (d) Mapp, A. K.; Heathcock, C. H. J. Org. Chem. **1999**, 64, 23–27; (e) Yokoe, H.; Sasaki, H.; Yoshimura, T.; Shindo, M.; Yoshida, M.; Shishido, K. Org. Lett. **2007**, *4*, 969–971; (f) Evans, D. A.; Welch, D. S.; Speed, A. W. H.; Moniz, G. A.; Reichelt, A. J. Am. Chem. Soc. **2009**, *131*, 3840– 3841.
- 13. Ho, G.-J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271-2273.
- (a) Evans, D. A.; Bartroli, J. A.; Shih, T. L. J. Am. Chem. Soc. **1981**, 103, 2127–2129;
 (b) Evans, D. A.; Bender, S. L. Tetrahedron Lett. **1986**, 27, 799–802;
 (c) Jones, T. K.; Reamer, R. A.; Desmond, R.; Miles, S. G. J. Am. Chem. Soc. **1980**, 112, 2998;
 (d) Hulme, A. N.; Rosser, E. M. Org. Lett. **2002**, 9, 265–267;
 (e) Sharma, G. V. M.; Cherukupalli, G. R. Tetrahedron Asymmetry **2006**, 17, 1081–1088.
- 15. Crouch, R. D. Tetrahedron 2004, 60, 5833-5871. and references cited therein.
- 16. Hori, H.; Nishida, Y.; Ohrui, H.; Meguro, H. J. Org. Chem. 1989, 54, 1346-1353.